close

Anmelden

Neues Passwort anfordern?

Anmeldung mit OpenID

Danyal Winters Von Licht und Wahrscheinlichkeitswellen – Was

EinbettenHerunterladen
Von Licht und Wahrscheinlichkeitswellen –
Was passiert im Atom?
Danyal Winters
Wissenschaft für Alle
Mittwoch, 25. August 2010
GSI Darmstadt
Dieses Bild zeigt alles was wir sehen können…
Alles andere ist für uns einfach Schwarz…
…aber durch Schwarz-Weiß denken
kommt man meistens nicht weiter,
und findet die Wahrheit nicht…
Und dass wäre doch Schade
Weil sie ist so schön!
Philosophie:
Woher kommt das Wort „Atom“?
Æ Griechisch: Atomos bedeutet unteilbar
Leukipp (um 450-370 v. Chr.)
Demokrit (460-371 v. Chr.)
Epikurs (341-270 v. Chr.)
Plato (428-348 v. Chr.)
Aristoteles (384 -322 v. Chr.)
Chemie:
Joseph Louis Proust (1755-1826)
John Dalton (1766-1844)
Physik:
Joseph J. Thomson (1856-1940)
• Entdecker des Elektrons
• Atom hat positive und negative
Teilchen
Ernest Rutherford (1871-1937)
• Entdecker des Atomkerns
mit Elektronenhülle
• Elektronische Zustände im Atom
• Problem Æ Atom strahlt nicht!
Niels Bohr (1885-1962)
3 Postulate:
1. Diskrete Kreisbahnen für Elektronen
2. Bahndrehimpuls ist „Quantisiert“
3. Strahlung nur durch Übergänge
zwischen Kreisbahnen
Max Planck (1858-1947)
Æ Planck Konstante
h=6.63x10-34 m2 kg/s
Albert Einstein (1879-1955)
Æ Photoelektrischer Effekt
hν
e-
Erwin Schrödinger (1887-1961)
Æ „Schrödinger-gleichung”
Werner Heisenberg (1901-1976)
Æ Unbestimmtheitsrelation
Paul Dirac (1902-1984)
Æ Dirac-gleichung
(relativistisch)
Atomis
Atomphysik und
Quantenmechanik
femtometer (fm)
Ångström (Å)
Rutherford Streuung Æ Atom-Größe
Da gibt es aber doch ein Problem…
Das Bohrsche Atommodell (Wasserstoff)
Bohrsche Postulate:
1. Elektronen können sich auf bestimmten diskreten Kreisbanen
verlustfrei bewegen. Zu jeder Bahn gekört eine diskrete Energie En.
2. Beim Übergang von der Bahn n auf die Bahn m wird ein Photon mit
der Energie: Eph=Em-En emittiert.
3. Es sind nur solche stationären Bahnen erlaubt, bei denen für den
Bahndrehimpuls gilt: L=nh (n=1,2, …).
das einfache Bohr Modell
Lyman
Serie
n=4
n=3
n=2
K
L
M
N
n=1
n=2
n=1
n=3
n=4
"Größe"
"Energie"
Übergänge zwischen Kreisbahnen:
Das Licht der Atome
Frank-Hertz-Versuch
( Hg = Quecksilber )
Frank-Hertz-Versuch - Experiment
Das Elektromagnetische Spektrum
Das Elektromagnetische Spektrum
Radiowellen
Am unteren Ende des elektromagnetischen Spektrums liegen die Radiowellen. Sie werden zur
Informationsübertragung genutzt und helfen Wissenschaftlern dabei, mehr über unser Universum
zu erfahren.
Mikrowellen
Die Anwendungen von Mikrowellen sind vielfältig; sie reichen vom Aufwärmen von Fertiggerichten
über das Radar und Satellitenfernsehen bis hin zum Beschleunigen von Elektronen in den
Strahlungsquellen der Zukunft, den Röntgenlasern.
Infrarotstrahlung
Infrarotstrahlung können wir nicht sehen, wohl aber als Wärme spüren.
Sichtbares Licht
Nur ein ganz kleiner Bereich des elektromagnetischen Spektrums ist für das menschliche Auge
sichtbar. Hier sind alle Farben des Regenbogens zu Hause.
Ultraviolettstrahlung
An das energiereiche Ende des sichtbaren Lichts grenzt die bräunende Ultraviolettstrahlung.
Röntgenstrahlung
Röntgenstrahlung ist aus der medizinischen Diagnostik nicht mehr wegzudenken und leistet auch in
Bereichen wie der Archäologie und Kunst wertvolle Dienste. Als Strahlungsquellen der Zukunft
eröffnen leistungsstarke Röntgenlaser völlig neue Forschungsmöglichkeiten.
Gammastrahlung
Gammastrahlung bildet das kurzwellige Ende des elektromagnetischen Spektrums. Ihre Wellen
haben die höchsten Frequenzen und die höchsten Energien. Gammastrahlung entsteht bei
radioaktiven Vorgängen in Atomkernen und wenn Materie und Antimaterie sich zu reiner Energie
vernichten.
Lichtquellen: Glühlampe
max. 5% der Emission ist sichtbares Licht,
alles andere ist Wärmestrahlung (infrarot)
Lichtintensität
λ in nm
λ in nm
Lichtquellen: Laser (50 Jahre)
Light Amplification by Stimulated Emission of Radiation
a
g
Absorption
Emission
Stimulierte
Emission
Besondere Eigenschaften:
• kohärent (gleiche Phase)
• monochromatisch (gleiche Farbe)
• nicht divergent (schöner Lichtstrahl, nicht auseinandergehend)
Licht lässt sich richten…
…und auch brechen…
Das Prinzip von Huygens:
Æ Licht ist eine Welle!
Ausbreitung einer elektromagnetischen Welle
Strahlungscharakteristik eines Dipols
Photo-Effekt:
Photon rein Æ Elektron raus
Compton-Effekt:
Photon streut an Elektron
Wellenfunktion der Teilchen
Eine Spalte
Eine Spalte
Zwei Spalten
Zwei Spalten
Wellenmechanisches Bild der Elektronbahn
Erklärung des Bohrschen Postulats
Heisenbergsche
Unbestimmtheitsrelation
Wahrscheinlichkeitsinterpretation
Die vier Quantenzahlen
Schrödinger stellt die berühmte Wellengleichung auf, welche die dreidimensionalen
Wellen eines Atoms berechnen kann. Beim Lösen dieser Schrödingergleichung ergeben
sich vier Quantenzahlen:
Quantenzahl
Hauptquantenzahl
n
Werte
Beschreibung
1 ... ∞
Bestimmt die größe der Orbitale. Ist gleichzusetzen mit der
Energie des Elektrons
Nebenquantenzahl
(Drehimpuls)
l
0 ... (n-1)
Magnetquantenzahl
ml
-l ... +l
Spinquantenzahl
ms
-1/2 , +1/2
Bestimmt die Geometrie der Orbitale.
• 0=s (Kugel)
• 1=p (Hantel)
• 2=d (zwei Hanteln nahezu senkrecht - bei den meisten
Orbitalen dieser Art)
• 3=f (noch eine dritte dazu)
Gibt an wieviele Oribitale von dem durch die
Nebenquantenzahl bestimmten Typ vorhanden sind.
• s: 1
• p: 3
• d: 5
•f:7
Gibt den Eigendreh-Spin des Elektrons an. Jedes Elektron
kann sich entweder ,,linksherum'' oder ,,rechtsherum'' drehen.
Wellenfunktion des Wasserstoffatoms
a0 = Bohr radius (0.5 Å)
a0 = Bohr radius (0.5 Å)
a0 = Bohr radius (0.5 Å)
a0 = Bohr radius (0.5 Å)
Periodensystem der Elemente
Wellenmechanische „Bilder“ des Elektrons im Wasserstoff
Wahrscheinlichkeitsdichte (Ψ2 über der φ-Ebene)
der Wellenfunktion des Wasserstoffatoms.
Von links oben nach rechts unten:
n=1, l=0, m=0; n=2, l=0, m=0; n=2, l=1, m=0;
n=3, l=0, m=0; n=3, l=1, m=0; n=3, l=2, m=1;
(erzeugt mit Hydrogenic v4.0 von Wolfgang Christian, schulphysik.de)
Die echte Struktur des Wasserstoffatoms
Skala
Änderung
mL mS
Fein-Struktur
Bohr
von Dirac
Energie=
Zustände
Elektron-Spin
=
Schrödinger
Gleichung
(kein spin)
LambVerschiebing
=
QED Korrektur
(VakuumPolarisation)
HyperfeinStruktur
=
Kern-Spin
ZeemanAufspaltung
im
magnetischen
Feld
Warum sind Hochgeladene Ionen interessant?
Einfache Systeme (wenige
Elektronen): von Wasserstoff bis
zu H-ähnlichem Uran
Erlaubt die QED Theorie zu testen
in extrem starken Elektromagnetischen
Feldern. Messung von fundamentalen
Konstanten und Eigenschaften
des Kerns.
EB~105 eV
Zα~1
~Z3
EB~10 eV
Zα~10-2
Das Feld von solchen Ionen
bei sehr hohe Geschwindigkeiten U92+
sieht aus wie ein Donut.
(relativistischer Effekt)
Æ Kurzer Intensiver Puls.
Kernladung, Z
t ≤ 0.1 as
I ≈ 1021 W/cm2
GSI Atomphysik - Spektroskopie am Experimentier
Speicher
Ring
Elektronenkühler
Gas-Target
Lichtbild des Elektronenkühlers
Gas-Strahl
Ionenstrahl
"Live" Target Diagnose
Gas-Strahl
107
Xe
Projektile
He-Target
5x1013 1/cm2
106 Xe
Projektile
Ionenstrahl
R. Grisenti et al., (2008)
Ich bedanke mich für Eure
Aufmerksamkeit und hoffe,
dass es Euch gefallen hat.
Danyal Winters
Wissenschaft für Alle
Mittwoch, 25. August 2010
GSI Darmstadt
EXTRA FOLIEN
0o Röntgen Spektroskopie (Elektronenkühler)
U92+
Dipol
Magnet
600
500
H-ähnliches
Uran
Lyα1
Lyα2
Balmer
300
L-RR
200
j=1/2
j=3/2
counts
400
K-RR
100
0
20
40
60
80
100
120
Energy [keV]
140
160
180
200
1s-Lamb Verschiebung in H-ähnlichem Uran
Æ QED Test
140
1s-Lamb Shift
Lyα1
120
counts
100
Experiment: 459.8 eV ± 4.6 eV
80
2s1/2
Lyα2
Theory:
60
M1
463.95 eV
K-RR
40
20
459.8±2.3±3.5 eV
0
80
100
120
140
160
180
2p3/2
Lyα1 (E1)
2p1/2
Lyα2 (E1)
1s1/2
200
Decelerated Ions:
Cooler (our exp.)
Cooler
91+
U
Gasjet
520
510
500
490
480
470
460
450
440
430
420
Decelerated
Ions: Jet
Research Highlights
Nature 435, 858-859
(16 June 2005)
Lamb Shift [eV]
photon energy [kev]
1990 1992 1994 1996 1998 2000 2002
Year
Theory
A. Gumberidze
PhD thesis 2003,
PRL 94, 223001
(2005)
2D Si(Li)-Detektoren für Compton Polarimetrie
Auf Si(Li) and Ge(i)
basierte Compton
Polarimeter
Si(Li)
32+32 Streifen
Si(Li)
Kristall Abmessungen:
4'' x 4''
Energy Auflösung – Timing - 2D Position Empfindlichkeit
Ge(i)
128+48 Streifen
Polarisationsmessungen via Compton-Streuung
90
120
60
30
150
180
0
330
210
240
300
270
Röntgen Bilder für Compton-Streuung - Winkelabhängigkeit
Polarisationsmessungen via Compton-Streuung
90
120
60
30
150
180
0
330
210
240
300
270
Röntgen Bilder für Compton-Streuung - Winkelabhängigkeit
GZ Hyperfein-Struktur in hochgeladenen Ionen
Wasserstoff:
λ = 21.10608180988(2) cm
τ = 10 7 Jahre
Eta Carinae
J=1/2 & I=1/2, Æ F=0,1
J=1/2 & I=9/2, Æ F=4,5
Laser Spektroskopie: HFS in 209Bi
Laser und Ion-Energie:
~615 nm @ 428 MeV/u
Ions
Laser
Excitation
Li-like
Gasjet
Target
Fluoreszenz
Nachweis
H-like
209Bi82+
(H-like) @ 244 nm
209Bi80+
(Li-like) @ 1550 nm
J=1/2 und I=9/2 Æ F=4,5
Elektronen
Kühler
F=4 Æ F=5 Übergang
Der Übergang in Li-ähnlichem Bi
ist von großer Bedeutung, da er
trotz mehrerer Versuche noch nicht
gemessen werden konnte.
P. Beiersdorfer et al. Phys. Rev. Lett. 80 (1998) 3022
V.M. Shabaev et al., Phys. Rev. Lett. 86 (2001) 3959
Document
Kategorie
Seele and Geist
Seitenansichten
5
Dateigröße
9 383 KB
Tags
1/--Seiten
melden