close

Anmelden

Neues Passwort anfordern?

Anmeldung mit OpenID

D. Weishaupt V. D. Köchli B. Marincek Wie funktioniert - Springer

EinbettenHerunterladen
D. Weishaupt
V. D. Köchli
B. Marincek
Wie funktioniert MRI?
Eine Einführung in Physik und Funktionsweise
der Magnetresonanzbildgebung
6. Auflage
D. Weishaupt
V. D. Köchli
B. Marincek
Wie funktioniert MRI?
Eine Einführung in Physik und Funktionsweise
der Magnetresonanzbildgebung
6. Auflage
Unter Mitarbeit von
J. M. Froehlich, D. Nanz, K. P. Prüßmann
Mit 61 Abbildungen und 9 Tabellen
13
Prof. Dr. Dominik Weishaupt
Unter Mitarbeit von:
Institut für Radiologie
Stadtsspital Triemli Zürich
Birmensdorferstr. 479, CH-8063 Zürich
Prof. Dr. Klaas P. Prüßmann
Dr. Victor D. Köchli
Institut für Biomedizinische Technik (IBT)
Eidgenössische Technische Hochschule (ETH)
Zürich
Gloriastrasse 35, CH-8092 Zürich
Cistec AG
Hohlstrasse 283, CH-8004 Zürich
Dr. Johannes M. Froehlich
Prof. Dr. Borut Marincek
Guerbet AG
Winterthurerstrasse 92, CH-8006 Zürich
Institut für Diagnostische Radiologie
Universitätsspital
Rämistrasse 100, CH-8091 Zürich
Priv.-Doz. Dr. Daniel Nanz
Department Medizinische Radiologie
Universitätsspital
Rämistrasse 100, CH-8091 Zürich
ISBN 978-3-540-89572-5 Springer Medizin Verlag Heidelberg
Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.
Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des
Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder
der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur
auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im
Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik
Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig.
Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.
Springer Medizin Verlag
Ein Unternehmen von Springer Science+Business Media
springer.de
© Springer Medizin Verlag Heidelberg 2009
Printed in Germany
Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.
Produkthaftung: Für Angaben über Dosierungsanweisungen und Applikationsformen kann vom Verlag keine
Gewähr übernommen werden. Derartige Angaben müssen vom jeweiligen Anwender im Einzelfall anhand anderer
Literaturstellen auf ihre Richtigkeit überprüft werden.
Planung: Peter Bergmann, Heidelberg
Projektmanagement: Willi Bischoff, Heidelberg
Copyediting: Ursula Illig, Stockdorf
Satz: TypoStudio Tobias Schaedla, Heidelberg
Druck: Stürtz AG, Würzburg
Gedruckt auf säurefreiem Papier
SPIN 12567850
BF/2111 – 5 4 3 2 1 0
V
Vorwort zur 6. Auflage
Nach fünf deutschen Auflagen ist dies nun bereits die 6. Auflage des Buchtitels »Wie
funktioniert MRI? Eine Einführung in die Physik und Funktionsweise der Magnetresonanztomographie«. Es freut uns sehr, dass dieses Buch die Leserschaft so nachhaltig
anspricht.
Seit der Einführung der Magnetresonanztomographie (MRT, MRI) in die Medizin hat
die Methode nichts an ihrer Dynamik und Faszination verloren. MRI ist heute eine etablierte bildgebende Modalität in der medizinischen in-vivo Diagnostik und das Potenzial
ist noch lange nicht ausgeschöpft. Ständige Weiterentwicklungen der Methode ermöglichen neue Möglichkeiten und eine präzisere Diagnostik. Erwähnenswert ist auch die
Tatsache, dass MRI zunehmend eine Bedeutung bei der Ausführung von bildgesteuerten
Interventionen zukommt. Die herausragende Bedeutung von MRI für die Medizin wurde
zusätzlich im Jahre 2003 durch die Verleihung des Nobelpreises an Paul C. Lauterbur und
Peter Mansfield, unterstrichen. Die Herren Lauterbur und Mansfield haben die Grundlagen geschaffen, dass der Kernspinresonanzeffekt (nuclear magnetic resonance; NMR), der
von F. Bloch und M. Purcell 1948 etwa gleichzeitig entdeckt wurde, in ein Bild umgewandelt werden kann.
Ziel dieses Buches ist es, allen Interessierten, die physikalischen Grundlagen von MRI
in einer einfachen Weise näher zu bringen. Dies ist kein Buch für MR-Spezialisten oder
MR-Physiker, sondern es richtet sich an unsere Studentinnen und Studenten, Assistenzärzte und -innen, Fachleute für medizinisch-technische Radiologie (MTRA) oder kurz an
alle jenen Personen, die sich für MRI interessieren oder am Anfang ihrer Ausbildung in
MRI stehen und einen einfachen Leitfaden suchen, sich in die technischen Grundlagen
dieser Methode einzulesen.
Verglichen mit der 5. Auflage haben wir die vorliegende 6. Auflage wiederum komplett überarbeitet. Besonderes Augenmerk haben wir darauf gerichtet, dass die neuesten
Tendenzen und Entwicklungen, die im klinischen MRI in der Humanmedizin eine
Rolle spielen, im Buch integriert sind. Neu haben wir ein Kapitel über funktionelle MRIDiagnostik (d. h. MRI jenseits von Morphologie und Struktur) eingefügt. Die funktionelle
MRI ist von besonderem Interesse, da es das konventionelle MRI um eine funktionelle
Dimension erweitert.
An dieser Stelle möchte ich den Mitautoren Priv. Doz. Dr. Daniel Nanz, Dr. Johannes
Fröhlich und Prof. Klaas P. Prüßmann für ihre Buchbeiträge danken. Danken möchte
ich auch all denen Personen, die uns ein Feedback oder Verbesserungsvorschläge für das
Buch gegeben haben. Alle diese Rückmeldungen sind wichtig, um dieses Buch noch zu
verbessern und die Grundlagen von MRI noch verständlicher zu machen.
Abschließend möchte ich auch dem Springer Verlag, insbesondere Herr Dr. Peter
Bergmann für die gute Zusammenarbeit danken.
Dominik Weishaupt
Zürich, im Frühjahr 2009
VII
Inhaltsverzeichnis
1
Spins und das MR-Phänomen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1
2.2
T1: Longitudinale Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
T2/T2*: Transversale Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Bildkontrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1
3.2
3.3
3.4
3.5
3.6
Repetitionszeit TR und T1-Gewichtung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Echozeit TE und T2-Gewichtung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Sättigung bei kurzer Repetitionszeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Pulswinkel (»Flip Angle«) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Vorsättigung (»Presaturation«) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Magnetisierungstransfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4
Schichtwahl und Ortskodierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1
4.2
Dreidimensionale Ortskodierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
K-Raum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5
Determinanten des Signal-zu-Rausch-Verhältnisses . . . . . . . . . . . . . . . . . . . . 25
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
Pixel, Voxel, Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Schichtdicke und Bandbreite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Field-of-View und Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Anzahl der Messungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Bildparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Magnetfeldstärke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Spulen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Parallele Bildgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6
Aufbau eines MR-Tomographen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1
6.2
6.3
6.4
Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Gradientensystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Hochfrequenzsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7
Basis-Pulssequenzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
Spinecho(SE)-Sequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Outflow-Effekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Mehrschichtaufnahme (»Multislice Imaging«) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Inversion-Recovery(IR)-Sequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STIR-Sequenz (»Short TI Inversion Recovery«) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
FLAIR-Sequenz (»Fluid Attended Inversion Recovery«) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Gradientenecho(GRE)-Sequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Mehrfache Echos (Multi-Echo-Sequenzen) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
VIII
Inhaltsverzeichnis
8
Schnelle Pulssequenzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
Schnelle (Fast, FSE)- oder Turbo-Spinecho(TSE)-Sequenzen . . . . . . . . . . . . . . . . . . . . . . . . 49
Single-Shot-Fast-Spine-Echo(SSFSE)-Sequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Schnelle (Fast) oder Turbo-Inversion-Recovery (Fast STIR)-Sequenzen . . . . . . . . . . . . . . 51
Schnelle Gradientenecho(GRE)-Sequenzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Echoplanare (EPI-) Sequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Hybridsequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Gradient and Spinecho(GRASE)-Sequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Spiralsequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Echozeit und T2-Kontrast in schnellen Sequenzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9
Techniken zur Fettsuppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.1
9.2
9.3
9.4
Fettsuppression durch Nutzen der chemischen Verschiebung zwischen
Wasser und Fett . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Frequenzselektive Fettsuppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Short-Time Inversion Recovery (STIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Spectral Presaturation with Inversion Recovery (SPIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10
Parallele Bildgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1
10.2
10.3
10.4
Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Prinzip der parallelen Bildgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Besondere Anforderungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Anwendungsbereich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
11
Kardiovaskuläre Bildgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
Angiographie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Perfusionsbildgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Diffusionsbildgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Der BOLD-Effekt in der funktionellen Hirnbildgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Bildgebung am Herzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Herzbildgebung mit SSFP-Sequenzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Myokardperfusionsbildgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Späte Signalverstärkung: »Late-Enhancement« . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Nachweis pathologisch hoher Eisenkonzentrationen im Herzmuskel . . . . . . . . . . . . . . . 87
12
MR-Kontrastmittel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
Wirkungsweise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Chemische Struktur/Komplexchemie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Relaxivität und Dosis-Wirkungs-Beziehung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Pharmakologische Eigenschaften der extrazellulären Kontrastmittel . . . . . . . . . . . . . .100
Leberspezifische Kontrastmittel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Intravaskuläre oder Blood-Pool-Kontrastmittel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
MR-Athrographie mit extrazellulären Gadoliniumkomplexen . . . . . . . . . . . . . . . . . . . . .111
Magen-Darm-Kontrastierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
Weitere MR-Kontrastmittel und Kontrastierungskonzepte . . . . . . . . . . . . . . . . . . . . . . . .114
IX
Inhaltsverzeichnis
13
Artefakte im MR-Bild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
Bewegungs- und Flussartefakte (»Ghosting«) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Phase Wrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
Chemische Verschiebung (»Chemical Shift«) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
Suszeptibilität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
Trunkationsartefakt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
Magic Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
»Eddy Currents« . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
Partialvolumenartefakte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
Inhomogene Fettsuppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
Linienartefakte (»Zipper-Like Artifacts«), Radiofrequenzstörung . . . . . . . . . . . . . . . . . .128
Criss-Cross- oder Herring-Bone-Artefakte, Datenfehler . . . . . . . . . . . . . . . . . . . . . . . . . . .128
Dielektrische Effekte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
14
Hochfeld-MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
14.1
14.2
14.3
14.4
14.5
14.6
Gewebekontrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Suszeptibilität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Chemische Verschiebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Hochfrequenz(HF)-Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
Dielektrische Effekte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
Klinische Bildgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
15
Bildgebung jenseits von Morphologie und Struktur . . . . . . . . . . . . . . . . . . . 133
16
Sicherheit und Risiken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
16.1
16.2
16.3
Biologische Effekte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
Lärm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
Patientensicherheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
Weiterführende Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Glossar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Stichwortverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Vorbemerkung
In diesem Buch werden wiederholt die Begriffe »Z-Richtung« und »XY-Ebene« auftauchen. In allen Abbildungen verläuft das äußere Magnetfeld B0 von unten nach oben, und
wir bezeichnen diese Richtung als Z. Die beiden anderen Dimensionen sind X und Y.
Die XY-Ebene steht senkrecht auf der Z-Achse und läuft somit in unseren Abbildungen
horizontal.
XI
Abkürzungen
2D
3D
FID
FSE
Gd
GRE
HF
IR
MHz
MR
MRA
MRI
msec
NSF
PC-MRA
PD
Ppm
RES
RF
SAR
SE
SNR
SPIO
T
TE
TOF
TR
USPIO
zweidimensional
dreidimensional
Free Induction Decay
Fast-Spin-Echo
Gadolinium
Gradienten-Echo
Hochfrequenz
Inversion Recovery
Megahertz
Magnetresonanz
MR-Angiographie
Magnetresonanz-Imaging
Millisekunden
Nephrogene systemische Fibrose
Phasenkontrast-MR-Angiographie
Protonen-gewichtet
Parts per million
Retikuloendotheliales System
Radiofrequenz
Specific Absorption Rate
Spinecho
Signal-zu-Rausch-Verhältnis
Superparamagnetic nanoparticles of iron oxide
Tesla
Echozeit
Time-of-Flight
Repetitionszeit
ultrasmall superparamagnetic nanoparticles of iron oxide
Document
Kategorie
Bildung
Seitenansichten
4
Dateigröße
96 KB
Tags
1/--Seiten
melden