close

Anmelden

Neues Passwort anfordern?

Anmeldung mit OpenID

14. November 2005

EinbettenHerunterladen
Gliederung der Vorlesung
Aerosol- und Wolkenphysik
ƒ
Entstehung, Transport und Lebensdauer von Aerosolen
ƒ
Größenverteilung des Aerosols
ƒ
Wirkung des Aerosols auf das Klima
ƒ
Wolkenbildung
- Krümmungseffekt
- Lösungseffekt
ƒ
Wachstum von Wolkentropfen
- Diffusionswachstum
- Wachstum durch Kollision/Koagulation
- Eiskristalle
ƒ
Niederschlagsbildung
- warmer Regen
- kalter Regen
1. Vorlesung
2. Vorlesung
3. Vorlesung
4. Vorlesung
1
Lerninhalte 4. Vorlesung
ƒ Wie unterscheiden sich Wolken über dem Meer von jenen über Land?
ƒ Wodurch zeichnen sich Kondensationskerne aus und wieviele gibt es davon?
ƒ Was ist der adiabatische Wolkenwassergehalt?
ƒ Was bezeichnet das Entrainment?
ƒ Was sind die 4 Möglichkeiten um Eispartikel zu bilden?
ƒ Was ist der Bergeron-Findeisen Effekt?
ƒ Durch welche Prozesse wachsen
Eiskristalle?
ƒ Wie entsteht "kalter Niederschlag"?
ƒ Was ist der "seeder-feeder" Effekt?
2
Water Phase Changes
3
Niederschlagsformen
ƒ Schnee – Eiskristalle
ƒ Rain – Flüssiges Wasser meist durch schmelzenden Schnee
ƒ Graupel – kleine Eiskügelchen
ƒ Hail – große Eiskügelchen
4
Gefrierender Regen
Unterkühlte Tropfen erreichen Boden, der kälter als 0°C ist
5
Niederschlagstypen
Graupelschauer
Schneeregen
6
Wie entsteht Niederschlag?
7
Pulsradar
τ=
T=
c ⋅t
r=
2
Elektromagnetische Wellen bewegen sich mit Lichtgeschwindigkeit c = 3·108 m/s
Laufzeitdifferenz Δt zwischen Empfang- und Sendezeit zur Bestimmung des
Abstands r des reflektierenden Objekts zum Radar
ƒ Was ist der eindeutige Entfernungsbereich?
ƒ Welcher Abstand zwischen 2 Zielen läßt
sich auflösen?
rmax = T·c/2= 4·10-3·3·108 /2= 600 km
Δt = τ·c/2 = 3·10-6·3·108 /2= 450 m
8
Meßprinzip: Rückstreuung
Verhältnis von Wellenlänge λ zu Teilchengrösse r bestimmt “Rückstreuung”
Rayleigh-Regime λ >> r
σ ≈ λ−4
9
Regentropfen-Größenverteilung
N(D)
∞
z = ∫ N ( D ) D 6 dD
0
Radarreflektivitätsfaktor z
ist das 6. Moment der
Tropfengrößenverteilung
z ist mikrophysikalische Eigenschaft
und gleichzeitig Radarmessgröße
http://www.nssl.noaa.gov/~cgodfrey/rain/dsd/dsd20010908.html
10
Niederschlagsbestimmung
1. Messung des Radarreflektivitätsfaktors
Z = 10 log10 ( z )
1 Tropfen mit 1 mm → z =1 mm6m-3 → 0 dBz
+
10 Tropfen mit 1 mm → z =10 mm6m-3 →10 dBz
100 Tropfen mit 1 mm → z =100 mm6m-3 → 20 dBz
2. Annahmen über
- die Tropfengrößenverteilung
- die Fallgeschwindigkeit der Tropfen
RM =
ρ wπ
6
∞
3
v
(
D
)
D
N ( D )dD
∫
0
3. Niederschlagsrate am Boden
11
Aufgaben: Radarmeteorologie
Welchen Radarreflektivitätsfaktor misst ein Radar, wenn sich im
homogenen Radarvolumen pro Kubikmeter
10 Tropfen a 1mm Durchmesser
z =10+3·26=202 mm6 m-3
+
3 Tropfen a 2 mm Durchmesser
Z =10 log10(z) = 23.1 dBz
befinden?
Angenommen ein weiterer Tropfen befindet sich im Volumen, wie groß
muss dieser sein um 50 dBz zu erreichen.
50 dBz = 100000 mm6 m-3
zTropfen = 100 000 - 202 = 99 798 mm6 m-3
dTropfen = (zTropfen )1/6 = 6.8 mm
12
Z-R Beziehung
z=aR
Messungen aus Darwin, Australien
b
z.B. a=200 b=1.5
Radarreflektivität z [mm6 m-3]
Regenrate am Boden R [mm/h]
Fehler in der mit Radar bestimten Niederschlagsrate
ist ungefähr Faktor 2
13
Tropfengrößenverteilung von Regen
Meist 2-Parameterverteilung;
z.B. die empirische Parametrisierung
als Funktion der Regenrate nach
Marshall & Palmer 1948
N ( D ) = N 0 e − ΛD
Λ = 41 R −0.21
N 0 = 0.08 cm −4
∞
z = ∫ N ( D ) D 6 dD
0
N 0 ⋅ 6!
1.47
z=
=
296
⋅
R
Λ7
14
Probleme der Radarmessung
Repäsentivität von Bodenmessern für Flächenniederschlag ist gering
15
Probleme bei der Niederschlagsbestimmung
ƒ Fehler in der Messung des Radarreflektivitätsfaktors Z
- Radareichung
- Dämpfungseffekte insbesondere hinter Gewitterzellen
- Festziele (clear-air scatter), bzw. ungenügende Korrektur
- Abschattung durch Orographie
- Annahme von Rayleigh-Streuung (z.B. Hagel)
- Inhomogenitäten im Rückstreuvolumen
ƒ Fehler in der Konversion von Z in Regenrate R
- Annahme der Tropfengrößenverteilung und Fallgeschwindigkeit
ƒ Übertragung von Messung in der Höhe zum Boden
- Anomale Ausbreitung
- Radarstrahl ist oberhalb des Niederschlagsgebietes
- Messungen in der Schmelzzone (Brightband)
- Verdunstung unterhalb des Radarstrahls
- Orographische Niederschlagsverstärkung
- Unterschätzung des Niederschlags, wenn niedriger Nebel oder
Stratus den Niederschlag verstärkt
16
Dämpfung
⎛ r
⎞
C
Pr = 2 η ⋅ exp⎜⎜ − 2 ∫ σ e (r ′)dr ′ ⎟⎟
r
⎝ 0
⎠
17
Das helle Band
Anschmelzen der Schneeflocken
führt zu erhöhter Rückstreuung
18
Brightband
19
Doppler Effect
Christian Doppler, östreichischer Mathemathiker und Physiker (1803-53)
Schallwellen sind das klassische Beispiel:
Ambulanz nähert sich (Kompression der Wellen)
Intervall zwischen Wellen verkürzt sich, höhere Frequenz (Ton)
Ambulanz entfernt sich (Streckung der Wellen)
Frequenz reduziert sich, niedriger Ton
Messung der Frequenzänderung
Geschwindigkeit der Ambulanz
Analog für elektromagnetische Wellen:
Objekt nähert sich Frequenzanstieg Blauverschiebung
Objekt entfernt sich Frequenzabnahme Rotverschiebung
20
Doppler Effect
Annahme einer konstanten Windgeschwindigkeit!
Vereinfachter Fall ist in der Realität nicht gegeben:
ƒ Windfeld ist nicht gleichförmig
ƒ Informationen können nur aus Regionen mit Zielen
(Regen, Insekten,..) gewonnen werden.
Geschwindigkeit eines Rückstreuers wird gemessen.
ƒ Die Höhe des Radarstrahls über Grund erhöht sich
mit zunehmender Distanz vom Radar.
Typischerweise dreht sich der Wind mit der Höhe.
21
Doppler-Radar
Relativgeschwindigkeit von rückstreuendem Objekt
und Empfänger führt zur Frequenzverschiebung
Windrichtung
Tropfen bewegen
sich zum Radar
Tropfen bewegen
sich vom Radar weg
22
Doppler-Radar
23
Vertikalschauendes Radar: Wolkenradar
24
Document
Kategorie
Gesundheitswesen
Seitenansichten
9
Dateigröße
2 092 KB
Tags
1/--Seiten
melden