close

Anmelden

Neues Passwort anfordern?

Anmeldung mit OpenID

Begleitendes Skript zur Aufgabenstellung: Produktion Schraubstock

EinbettenHerunterladen
Labor Zerspanung
Aufgabe: Produktion Schraubstock
Dokumentation für die Studierenden
Diese Dokumentation ist Eigentum des Labors. Markierungen, Notizen oder sonstige Veränderungen
dürfen nicht vorgenommen werden. Die Dokumentation ist spätestens am Ende des Labors wieder
zurückzugeben.
Aufgabenstellung
Die Aufgabe besteht darin, ein Prototypbauteil innerhalb des Semesters zeichnungskonform zu fertigen. Die Durchführung des Projektes erfolgt in einem Team, welches die einzelnen Aufgaben und
Arbeitspakete gemeinsam durchführt. Innerhalb des Projektes wird das Team alle notwendigen
Arbeitsschritte planen, mit den Labormitarbeitern besprechen und weitestgehend eigenständig durchführen. Die gemeinschaftliche Erarbeitung der Projektinhalte im Team findet zum Einen während der
Laborzeit und zum Anderen im Selbstlernanteil statt.
Das Laborteam wird Ihnen zu Beginn des Projektes die Rahmenbedingungen erläutern. Ihre Aufgabe
ist es dann, innerhalb dieses Rahmens das Projekt zu planen und umzusetzen:
- Es werden Arbeitspakete, Zuständigkeiten und Fristen definiert, damit das Projekt in der zur
-
-
-
Verfügung stehenden Zeit abgeschlossen werden kann.
Der Fertigungsprozess für das Werkstück wird geplant. Es müssen Überlegungen getroffen
werden, auf welche Weise (Bearbeitungsschritte und Werkstückspannung), mit welchen
Werkzeugen und mit welchen Schnittparametern die Werkstückfertigung durchgeführt werden
soll. Die entwickelte Vorgehensweise mit samt allen für die Bearbeitung benötigten Informationen muss in einem Arbeitsplan dokumentiert werden.
Während der Projektzeit erfolgt immer wieder eine Vorstellung und Besprechung des aktuellen Planungsstands (Projektplanung, Fertigungsplanung, Qualitätskontrolle) inklusive der dazugehörigen theoretischen Hintergründe, die Sie sich aus der Literatur, den Vorlesungsinhalten und den entsprechenden Skripten erarbeitet haben.
Die Bearbeitungsaufgabe wird vorbereitet: alle für den Zerspanprozess benötigten Werkzeuge
zu montieren und zu vermessen. Des Weiteren müssen alle notwendigen Rüstvorgänge
(Werkzeuge und Werkzeugkorrekturdaten eingeben, Werkstück spannen, Nullpunkt anfahren,
etc.) für die Bearbeitung vorgenommen werden und der anschließende Fertigungsprozess dokumentiert werden.
-
Nachdem die Fertigung abgeschlossen ist, wird festgestellt, inwiefern das gefertigte Werkstück die geforderten Genauigkeiten und Oberflächenanforderungen erfüllt. Zu diesem Zweck
werden im Vorfeld Messaufgaben definiert, welche sich zur Ermittlung der gewünschten
Parameter eignen.
-
Sie ermitteln die Messfähigkeit von Messeinrichtungen.
-
Die Mess- und Arbeitsergebnisse werden interpretiert und Rückschlüsse auf den gesamten
-
Fertigungsprozess gezogen.
Die Projektergebnisse werden besprochen.
Seite 1
Struktur der Arbeitspakete und Zuständigkeiten
Projektleitung
(Laborteam)
Marketing
…
Controlling
Logistik
Produktionsleitung
(Studierende)
Konstr. & Progr.
Fertigungsplanung
Qualitätssicherung
Montage
(Studierende)
(Studierende)
(Studierende)
(alle)
Seite 2
Inhalte der Arbeitspakete
Produktionsleitung
- Koordination Produktgestaltung, Fertigungsplanung, Qualitätssicherung, Montage
-
wesentliche Absprachen mit der Projektleitung
Terminierungen im Produktionsablauf / Maschinenkalender
Konstruktion & Programmierung
- Konstruktion: Festlegen der Toleranzen in den Zeichnungen
-
Programmierung: Erstellen der maschinenspezifischen NC-/CNC-Programme
Fertigungsplanung
- Arbeitsvorbereitung: Berechnung erforderliche Maschinenleistungen & Maschinenplanung,
Werkzeugplanung & Schnittdatenberechnung, Erstellung Arbeitspläne
- Fertigungsvorbereitung: Werkzeuge einrichten, Maschinen einrichten, Werkbänke einrichten,
Fertigen
Qualitätssicherung
- Messtechnik: Messmittelfähigkeitsberechnungen, Prüfplan erstellen, Prüfen
-
Qualitätsmanagement: FMEA
Montage
- Zusammenbau der Teile
Seite 3
Produktionsleitung
Allgemeine Aufgaben nach [1]: Konzeptionelle und operative Leitung der Produktion mit den Bereichen:
- Fertigung,
-
Arbeitsvorbereitung,
-
Auftragsmanagement,
-
Materiallager,
-
technischer Support und
-
Instandhaltung.
Einzelaufgaben Produktionsleitung (PL)
- PL stellt die termingerechte Fertigung der Aufträge mit der geforderten Qualität unter Einhaltung der Kosten sicher.
- PL sorgt für die kontinuierliche Optimierung der Prozesse und Abläufe, für die Instandhaltung
und Verbesserung der Anlagen und überwacht die Inbetriebnahme neuer Anlagen.
- PL obliegt die Einführung neuer Produktionsmethoden.
-
PL strukturiert die Abteilungen.
PL fördert die Kommunikation der Mitarbeiter und die Vernetzung der Abteilungen. [ebd.]
Hauptaufgaben der PL im Rahmen des Labors
- Koordination aller Arbeitspakete.
-
Planung der Termine, Räumlichkeiten und Arbeitsmittel.
-
Sicherstellung, dass Fristen und Termine eingehalten werden.
Leitung der Gruppensitzungen.
-
Information des Laborteams über anstehende Fragen, Probleme und Termine.
Seite 4
Konstruktion & Programmierung
Bei der Einführung neuer Produkte bekommt der Konstrukteur in der Regel von der Unternehmensleitung oder ihr untergeordneten Abteilungen eine mehr oder weniger genaue Aufgabenstellung, für die
er Lösungen finden muss. In Anlehnung an die VDI-Richtlinie 2222 lässt sich der Konstruktionsprozess in die folgenden vier Hauptphasen gliedern:
1. Analyse der Aufgabenstellung,
2. Konzipieren, Lösungssuche, Auswahl,
3. Entwerfen, Dimensionieren, Gestalten,
4. Ausarbeiten.
Während des gesamten Konstruktionsprozesses, d.h. in allen vier Arbeitsphasen, besteht für den Konstrukteur Informationsbedarf. Etwas 20% seiner Arbeitszeit beschäftigt er sich mit der Informationsbeschaffung und Informationsverarbeitung. Ziel muss es deshalb sein, ihm das Benötigte in Form praktischer Hilfsmittel in kürzester Zeit bereitzustellen.
Einige wichtige Hilfsmittel sind:
- Merkmallisten zur Erstellung der Anforderungsliste,
-
Lösungssammlungen,
-
Konstruktionskataloge,
Morphologische Kästen,
-
Gestaltungsrichtlinien,
-
Normen und Richtlinien,
-
Wiederholteilsammlungen,
-
Katalogteilsammlungen,
-
Werkstoffkataloge,
-
Relativkostenkataloge,
-
Berechnungsprogramme,
-
Kataloge vorhandener Betriebsmittel,
-
CAD. [1]
Aufgabenstellungen
- Im Rahmen dieses Labors wurden im Vorfeld die oben genannten vier Hauptphasen des Konstruktionsprozesses bereits durchlaufen. Die Zeichnungen für die einzelnen Bauteile existieren
bereits. In den Zeichnungen fehlen jedoch noch jegliche Tolerierungen, die Sie erarbeiten
müssen. Nähere Informationen finden Sie dazu im „Laborskript Fertigungsmesstechnik“. Dabei ist zu beachten, dass die Funktion des fertigen Produktes gewährleistet wird, die entstehenden Kosten, insbesondere die Fertigungskosten(1), aber so gering wie möglich bleiben.
-
Erstellen Sie die für die Fertigung der Teile notwendigen NC/CNC-Programme.
Seite 5
(1) Nach [1] lassen sich Fertigungskosten einsparen, wenn
-
bestgeeignete Fertigungsverfahren verwendet werden,
-
Bauteile fertigungsgerecht gestaltet sind,
-
Normteile, Kaufteile, Wiederholteile, Halbzeuge verwendet werden,
-
Maße so grob wie möglich toleriert werden,
nur die erforderliche Oberflächengüte vorgeschrieben wird,
-
wenige Sonderbehandlungen vorgesehen sind,
-
Feinstbearbeitungen möglichst vermieden werden,
-
Zahl der Bearbeitungsvorgänge möglichst gering sind,
Zahl der erforderlichen Aufspannungen möglichst klein sind,
-
die Teile leicht zu handhaben sind,
-
Teilezahl reduziert wird,
-
wenig und möglichst einfache Montageoperationen vorliegen,
-
Standardwerkzeuge und Standardvorrichtungen verwendet werden,
-
vorhandene Fertigungsmittel berücksichtigt werden,
-
Fremdbezug statt Eigenfertigung, bzw. Eigenfertigung statt Fremdbezug in Erwägung gezogen
wurde,
bestgeeignete Verbindungselemente verwendet werden,
-
- wenig Kontrollvorgänge erforderlich sind.
 Absprache mit Fertigungsplanung
Seite 6
Fertigungsplanung
Arbeitspläne beschreiben und dokumentieren die zu verrichtenden Tätigkeiten bei der Herstellung
eines Produkts. In ihnen ist festgehalten, welche Einzelverrichtungen mit welchem Zeitaufwand, welchen Rüstzeiten und welcher Maschinenbelegung verbunden sind. Diese Zeiten sind dann auch Basis
für die entstehenden Kosten und werden den zugehörigen Kostenstellen zugeschlagen. Die zur Herstellung erforderlichen Werkzeuge sind gelistet und werden der Terminierung entsprechend bereitgestellt oder reserviert.
[1]
Fragestellungen, die Ihnen helfen können
- Wie kann das Werkstück für die Bearbeitung gespannt werden?
-
Ist eine Vorbearbeitung der Werkstücke sinnvoll?
-
Welche Bearbeitungsschritte sind für die Fertigung des Werkstücks notwendig?
In welcher Reihenfolge sind die Bearbeitungsschritte durchzuführen?
-
Welche Werkzeuge sollen für die einzelnen Bearbeitungsschritte eingesetzt werden?
-
Welche Schnittparameter sind für die Bearbeitungsaufgabe und das jeweilige Werkzeug auszuwählen, um die definierten Qualitätsanforderungen zu erfüllen?
Wurden bei der Festlegung der Schnittparameter eventuelle Maximalwerte berücksichtigt?
Sind die Schnittparameter wirtschaftlich vertretbar (Kosten/Nutzen)?
-
Gibt es Besonderheiten zu berücksichtigen, um eine Kollision zwischen Werkzeug, Werkstück
-
Maschine oder Spannvorrichtung zu vermeiden?
Gibt es ein Werkzeugmagazin, ist die Nutzung des Magazins sinnvoll und wenn ja, wie sollen
die Werkzeuge dort angeordnet werden?
Aufgabenstellungen
- Berechnen Sie die für die Fertigung der einzelnen Teile erforderliche Maschinenleistung.
-
Weisen Sie die zu fertigenden Teile den Maschinen zu.
-
Berechnen und planen Sie die zur Fertigung notwendigen Werkzeuge mit allen ihren zum Ein-
-
satz notwendigen Daten.
Legen Sie die notwendigen Spannmittel fest.
-
Erstellen Sie für die zu fertigenden Bauteile jeweils einen Arbeitsplan entsprechend der Vorlage.
-
Bereiten Sie die Maschinen und die Werkzeuge fertigungsbereit vor.
Achten Sie bei allen Planungen auf die Wirtschaftlichkeit der Fertigung.
Seite 7
Arbeitsplanvorlage
Arbeitsplan
Bauteilbezeichnung:
Menge:
Material:
Datum Start:
AlCuMgPb
Nr.
Arbeitsgang
Arbeitsdaten
Arbeitswerte
Termin:
14.11.2014
Hilfs-/Prüfmittel
Bemerkungen/Skizzen
Werkzeugplanung
Die richtige Planung der Werkzeuge ist kritisch für das Arbeitsergebnis und die Wirtschaftlichkeit der
Bearbeitung. Folgende Fragen sollten Sie in Ihrer Planung berücksichtigen:
- Welche (besonderen) Merkmale weist das Bauteil auf - tiefe Taschen, Dünnwandigkeit, Material, Nuten, Flächenbeschaffenheit?
- Wie sieht die allgemeine Werkzeugstrategie im Unternehmen aus? Werden viele Spezial- und
Sonderwerkzeuge(1) beschafft/vorgehalten? Werden werkstoffspezifische oder universale
Werkzeuge benutzt? Wird mit Wendeschneidplatten- oder Standardwerkzeugen gearbeitet?
Werden teure Schneidstoffe mit hoher oder preisgünstigere mit niedriger Standzeit eingesetzt?
-
Welche Erwartungen haben Sie in Bezug auf die entstehenden Späne? Was müssen Sie bezüglich der Späne bei der Werkzugplanung beachten?
-
Werden Kühlschmierstoffe verwendet? Wenn ja, welche?
Ist es wirtschaftlicher mit wenigen verschiedenen Werkzeugen zu arbeiten oder kann auch ein
vielfältiges spezifisches Werkzeugspektrum sinnvoll sein?
(1) Sonderwerkzeuge (Individualwerkzeuge) tragen Schneiden, die der zu erzeugenden Kontur entsprechen. Sie können ohne unproduktive Unterbrechungen des Fertigungsprozesses spezielle Bearbeitungen ausführen, sind aber unter Umständen zu anderen Aufgaben ungeeignet. Kostengünstigere
Einzelwerkzeuge hingegen erfordern Werkzeugwechsel mit entsprechenden Unterbrechungen des
Zerspanungsprozesses. Sie sind aber universell einsetzbar und vereinfachen die Lagerhaltung. [2]
Seite 8
Qualitätssicherung
Aufgabe der Qualitätssicherung ist es unter anderem festzulegen, wie die definierten Merkmale eines
Produkts zu prüfen sind (Prüfplanung), wann, wo und durch wen die Prüfung auszuführen ist (Prüfausführung) und wie die erhaltenen Prüfdaten weiterverarbeitet werden sollen (Prüfdatenverarbeitung)
[1]. Im Rahmen dieses Labors sollen Sie sich insbesondere mit der Prüfplanung und der Prüfausführung auseinandersetzen. Mithilfe der Fertigungsmesstechnik sind die in den Zeichnungen geforderten
Qualitätsmerkmale sicherzustellen. Ferner sollen Sie im Vorfeld der Fertigung Überlegungen dazu
anstellen, welche Fehler in oder durch die Fertigung auftreten und wie diese vermieden werden können.
Prüfplanung
Die Festlegungen, die im Prüfplan gemacht werden müssen, lassen sich durch die Beantwortung von
acht Fragen zusammenfassen [1]:
1. Was? – Beschreibung der Prüfmerkmale, z.B. Längenmaß, Rundheit, Härte, Farbe
2. Wie? – Festlegung der Prüfmethode, z.B. Attributsprüfung(1) oder Variablenprüfung(2)
3. Womit? – Auswahl des Prüfmittels, z.B. vertikales Höhenmessgerät, digitaler Messschieber,
Rockwell-Härteprüfgerät
4. Wie viel? – Festlegung des Prüfumfangs, z.B. Stichprobenprüfung, 100%-Prüfung
5. Wann? – Festlegung des Prüfzeitpunkts, z.B. Eingangs-, Zwischen-, End-, Inprozess-, Postprozessprüfung
6. Wer? – Auswahl der Person, die prüfen soll, z.B. Werker, Maschinenbediener, Fachmann/frau aus dem QM-Bereich
7. Wo? – Festlegung des Prüforts, z.B. direkt an der Maschine, im Mess- und Prüfraum
8. Was geschieht mit den Prüfdaten? – Auswertung und Dokumentation der Prüfdaten, z.B. statistische Auswertung, Form und Umfang der Prüfprotokolle
Der Prüfumfang ist so festzulegen, dass möglichst alle fehlerhaften Teile erfasst werden können.
Trotzdem soll die Prüfung wirtschaftlich und kostengünstig sein, d.h., es soll nur so viel wie nötig
geprüft werden. Werden die Fertigungsprozesse weitgehend beherrscht, so genügt es, in größeren Zeitintervallen nur eine Stichprobe zu untersuchen. Mit gleicher Sensibilität sind auch der Prüfer und der
Prüfort passend auszuwählen. Sind die Prüfdaten ermittelt, so muss überlegt werden, wie sie ausgewertet werden sollen. Neben der Feststellung, ob ein Produkt als „Gut“ eingestuft werden kann, will
man häufig auch Daten über die Charakteristik des Fertigungsprozesses ermitteln. Art und Umfang der
Auswertung und Datenarchivierung müssen also gezielt festgelegt werden. In der „VDI/VDE/DGQRichtlinie 2619“ wird die Verfahrensanweisung zur Erstellung eines Prüfplans beschrieben [ebd.].
1) Attributprüfung: gut/schlecht Prüfung, z.B. Sichtprüfung einer Oberfläche
2) Variablenprüfung: Ermittlung quantitativer Merkmale, z.B. Bohrungsdurchmesser anhand kontinuierlicher Skala (Messwert)
Grundsätzlich gilt: Variablenprüfung der Attributprüfung vorziehen, da bessere Aussagekraft.
Seite 9
Prüfausführung
In der Prüfausführung wird festgestellt, ob und inwieweit die Produkte oder Dienstleistungen die an
sie gestellten Qualitätsanforderungen erfüllen. Dabei werden die ermittelten Werte mit den in der
Prüfplanung festgelegten Vorgabewerten verglichen. Werden Abweichungen festgestellt, sollen möglichst schnell die Ursachen gefunden und geeignete Korrekturmaßnahmen eingeleitet werden. Dies
kann zur Folge haben, dass die fehlerhaften Teile für die Weiterbearbeitung gesperrt werden und abgewogen wird, ob eine Nacharbeit möglich ist oder ob Teile ausgesondert werden müssen. Eine genaue Untersuchung der Fehlerursachen bildet die Grundlage für Verbesserungsmaßnahmen am Fertigungsprozess mit dem Ziel, weitere Fehler zu reduzieren oder ganz auszuschließen. [ebd.]
Prüfhäufigkeit
Bei der Prüfhäufigkeit werden die 100%-Prüfung, die Stichprobenprüfung und die dynamisierte Stichprobenprüfung unterschieden.
100%-Prüfung: Alle gefertigten Teile werden auf die gestellte Qualitätsanforderung geprüft. Da diese
Prüfung sehr zeitaufwendig und damit kostenintensiv ist, wird sie nur bei kritischen Teilen angewendet.
Stichprobenprüfung: Aus der Grundgesamtheit („N“ = die Anzahl der Grundgesamtheit) wird eine
Stichprobe mit kleinerer Anzahl („n“ = Umfang der Stichprobe) entnommen und geprüft. Diese Prüfung wird bei der Wareneingangsprüfung bei der Annahme von Losen mit größerem Umfang („N“)
angewendet. Um den Prüfumfang bei Fertigungsprozessen in der Serienfertigung zu vermindern beschränkt man sich hier auf Stichproben. Diese können entweder nach bestimmter Anzahl gefertigter
Werkstücke oder in bestimmten Zeitabständen entnommen werden. Grundlage für diese Prüfung ist
eine genaue Kenntnis der Prozesscharakteristik. Dafür werden in bestimmten Zeitabständen spezielle
Maschinen- und Prozessfähigkeitsuntersuchungen durchgeführt.
Dynamisierte Stichprobenprüfung: Zeigt eine Stichprobenprüfung über längere Zeit sehr gute Prüfergebnisse, so werden die Prüfhäufigkeit, der Prüfungsumfang oder beide verringert. Zeigt die Prüfung
wieder ein schlechteres Ergebnis, so wird die Prüfung wieder verschärft.
[ebd.]
Aufgabenstellungen
- Überlegen Sie, welche Fehler in oder durch die Fertigung auftreten können. Erarbeiten Sie adäquate Lösungsvorschläge, wie diese Fehler im Vorfeld verhindert bzw. bei Auftreten kurzfristig gelöst werden können. (FMEA)
-
Legen Sie die notwendigen Prüfmittel fest. Achten Sie dabei insbesondere auch auf auf die
-
Messmittelfähigkeit.
Untersuchen Sie alle einzusetzenden manuellen Messmittel auf ihre Fähigkeit. Nähere Informationen dazu gibt Ihnen das „Laborskript Prüfmittel“.
-
Erstellen Sie einen Prüfplan für jedes zu prüfende Bauteil.
Seite 10
Die folgende Abbildung 1 zeigt ein Beispiel für einen Prüfplan [3]
Abbildung 1: Beispiel Prüfplan
Seite 11
Überblick Arbeitspakete
Arbeitspläne
Spannmittelauswahl
Maschinenauswahl
Maschinenleistung berechnen
WZ-Auswahl & Schnittdatenberechng.
FP
K&P
QS
Toleranzen bestimmen
FMEA
Oberfläche definieren
Messmittelfähigkeit
NC-/CNC-Programme erstellen
Prüfplan erstellen
PL
Prüfmittel bereitstellen
org. Planung aller Arbeitsmittel
Terminplanung & -überwachung
Vorbereitung & Durchführung Teamsitzungen
Absprachen mit Laborteam
Alle
ggf. Vorbereitung Rohteile
Bauteile messen
Werkzeuge montieren, messen
ggf. Bauteile nachbearbeiten
Maschine rüsten
Endmontage
Bauteile fertigen
Funktionsprüfung & Auswertung
Einführung Messtechnik
Seite 12
Hilfsmittel, Informationen und Formeln
Hilfsmittel
Bei der Erfüllung der Aufgaben, insbesondere der übergeordneten Produktionsleitung, aber auch bei
der Suche, der Eingrenzung und der Beseitigung von Fehlern können Ihnen folgende Werkzeuge helfen:
-
Klassische Situationsanalyse
-
Problemanalyse
Netzplantechnik
-
Ursache-Wirkungs-Diagramm
-
W-Analyse
- Funktionendiagramm
Alle Werkzeuge sind in [4] beschrieben. An dieser Stelle sollen die für diese Aufgabe wichtigsten
Hilfsmittel in Kurzform erläutert werden.
Klassische Situationsanalyse: Die klassische Situationsanalyse nach [5] geht dabei grundsätzlich von
vier möglichen Handlungsfeldern aus:
1. Die Situation ist mit der Routine der vorhandenen Fähigkeiten zu bewältigen. Dies geschieht
oft 'automatisch' ohne dass wir lange darüber nachdenken oder die Handlung als solche bewusst wahrnehmen.
2. Die Situation erfordert, dass wir ein vorliegendes Problem analysieren und lösen müssen.
3. Die Situation erfordert, dass wir eine Entscheidung treffen und diese entsprechend vorbereiten
und bewerten müssen. Methodisch können wir dazu beispielsweise den paarweisen Vergleich
und die Nutzwertanalyse zu Hilfe nehmen.
4. Nach einer gefallenen Entscheidung müssen die entsprechenden Maßnahmen abgeleitet, geplant und umgesetzt werden. Eine hilfreiche Methode dafür ist die Netzplantechnik.
Die klassische Situationsanalyse verläuft in den in Abbildung 2 dargestellten vier Schritten:
Seite 13
Abbildung 2: die vier Schritte der Situationsanalyse nach [5]
Netzplantechnik: Die Netzplantechnik stammt aus dem Projektmanagement und wird dort angewandt,
um Abläufe von Vorgängen und deren Abhängigkeit zueinander darzustellen. Ein Netzplan hilft, Abläufe transparent zu machen und Projekte zeitlich effizienter zu gestalten. In einem Netzplan werden
die notwendigen Tätigkeiten in Form von Kästchen oder Kreisen und die zwischen ihnen existierenden Verbindungen dargestellt. Je nach Detaillierungsgrad des Netzplans können zu den einzelnen Tätigkeiten auch Anfangs- und Endtermine sowie die voraussichtliche Dauer vermerkt werden.
Funktionendiagramm: Ein einfaches Organisationsinstrument zur Koordinierung von Aufgaben und
Verantwortlichkeiten, auch oder gerade über viele Personen oder Bereiche hinweg, ist das Funktionendiagramm bei Honegger [6]. Dieses Diagramm listet in der ersten Spalte alle zu erledigenden Aufgaben auf, in der ersten Zeile werden alle an der jeweiligen Aufgabe beteiligten Personen oder Abteilungen aufgeführt (Tabelle 1). Die Tabelle hält für jede Aufgabe fest, wer entscheidet (E), wer ausführt (A), wer kontrolliert (K), wer ein Mitspracherecht (M) und wer ein Informationsrecht (I) hat.
Wenn eine Stelle in der Tabelle die Buchstaben E, A und K erhält, wird ein X für Gesamtverantwortung eingetragen.
Seite 14
Einzelaufgaben
Person/Abteilung 1
Person/Abteilung 2
Person/Abteilung 3
Person/Abteilung 4
Aufgabe/Projekt: ...
Aufgabe 1
E, K
A
I, M
A
Aufgabe 2
E
K
Eg
A
Aufgabe 3
I, M
En, K
Eg, I, K
A
Aufgabe 4
X
A
A
A
Aufgabe 5
I, M
A
A
X
Legende:
E = Entscheidung, Eg = Entscheidung in Grundsatzfragen, En = Entscheidung im Normalfall, A
= Ausführung, K = Kontrolle, M = Mitspracherecht, I = Informationsrecht, X = E+A+K
Tabelle 1: Funktionendiagramm nach [6]
Technische Daten VC810 FP3A
SPINNER VC810

Spindeldrehzahl: 60 – 8000 min-1

Eilganggeschwindigkeit X/Y/Z: 24/24/18 m/min
24 Platz WZ-Magazin


Aufstellfläche: 5,28 m²
 Arbeitsfläche: 25 m²

elektrische Leistung: ca. 15,5 kW
Deckel FP3A

21 Spindeldrehzahlen [min-1]:
40/50/63/80/100/125/160/200/250/315/400/
500/630/800/1000/1250/1600/2000/2500/3150


Vorschubgeschwindigkeit: 2 - 3600 mm/min
Eilganggeschwindigkeit X/Y/Z: 4000 mm/min
(stufenlos)

kein WZ-Magazin
 Aufstellfläche: ca. 6m²


Arbeitsfläche: 12,87 m²
elektrische Leistung: 2/3 kW
Seite 15
Maschinenleistung
Grundsätzlich variiert der Leistungsbedarf beim Fräsen mit:
-
der Zerspanungsrate
-
der durchschnittlichen Spandicke
-
der Fräsergeometrie
- der Schnittgeschwindigkeit.
Je größer die Zerspanungsrate (Q cm³/min), desto höher der Leistungsbedarf. Eine Maschine mit unzureichendem Drehmoment und unzureichender Leistung verursacht ungleichmäßige Spandicken, was
wiederum in instabiler Leistung resultiert. [7]
Die Berechnung der Antriebsleistung einer Zerspanungsmaschine wird mithilfe der Schnittkraft FC
vorgenommen. Sie wächst im gleichen Verhältnis wie der Spanungsquerschnitt S. Viele weitere Einflussgrößen werden zu einem konstanten Wert zusammengefasst, den man als spezifische Schnittkraft
kC bezeichnet. [2]
Zunächst werden für den Werkstoff und den Schneidstoff anhand von Richtwerttabellen die maximale
Schnitttiefe und der entsprechende Vorschub bestimmt. Unter Berücksichtigung der gewünschten
Standzeit wird dann die Schnittgeschwindigkeit festgelegt. Anschließend wird rechnerisch überprüft,
ob die Antriebsleistung ausreicht. Reicht die Maschinenleistung nicht aus, müssen die Arbeitswerte
entsprechend angepasst werden. [3]
Schnittdaten
Alle zur Berechnung notwendigen Formeln entnehmen Sie einschlägigen Tabellenwerken, z.B.:
-
Tabellenbuch Metall
-
Friedrich Tabellenbuch
Technisches Handbuch Zerspanung Firma Sandvik Coromant
-
Garant Zerspanungshandbuch
Werkzeugspezifische Einsatzdaten lassen sich auch online mit dem Toolscout der Firma Hoffmann
www.toolscout.de oder mit der Hoffmann-App http://www.hoffmann-group.com/downloads/diehoffmann-app.html ermitteln.
Weitere fertigungsrelevante Apps mit einer Vielzahl von Informationen um die Zerspanung bietet
auch die Firma Sandvik unter www.sandvik.coromant.com/downloads.
Eine Übersicht über die grundsätzliche Vorgehensweise bei der Ermittlung der einzustellenden
Arbeitswerte gibt die folgende Abbildung 3.
Seite 16
Abbildung 3: Ermittlung der einzustellenden Arbeitswerte [8]
Seite 17
Literatur
[1]
n.n.: Produktion – Technologie und Management, Verlag Europa-Lehrmittel, Nourney,
Vollmer GmbH & Co KG, Haan-Gruiten, 1. Auflage, 2013
[2]
Hengesbach u.a.: Zerspanungsmechanik – Lernfelder 1 bis 13, Bildungsverlag EINS
[3]
GmbH, Köln, 2. Auflage, 2013
n.n.: Zerspanungsmechanik Fachwissen, westermann Verlag, Braunschweig, 1. Auflage,
[4]
2011
Schwolow, V.: Instant-Kaffee für Führungskräfte, novumeco Verlag, Österreich,
[5]
Deutschland, 2011
Studienunterlagen der Studiengemeinschaft Darmstadt (SGD), Kurs: Mitarbeiter führen
und Motivieren, Heft 11: Problemlösung und Entscheidungsfindung, 2007
[6]
Honegger, Jürg: Vernetztes Denken und Handeln in der Praxis. Mit Netmapping und
Erfolgslogik schrittweise von der Vision zur Aktion. Versus Verlag AG, Zürich, 2008
[7]
Technisches Handbuch Zerspanungstechnologie, Firma Sandvik Coromant, Schweden,
2010
[8]
n.n.: Metalltechnik Tabellenbuch, westermann Verlag, Braunschweig, 4. Auflage, 2014
Seite 18
Anhang
Anforderung an technische Oberflächen
Pamphlet anlässlich des 22. „Design for X“ Symposiums 2011
Seite 19
Document
Kategorie
Internet
Seitenansichten
15
Dateigröße
1 047 KB
Tags
1/--Seiten
melden